Chapter 10. Direct-Current Circuits
10.5 RC Circuits
Learning Objectives
By the end of the section, you will be able to:
- Describe the charging process of a capacitor
- Describe the discharging process of a capacitor
- List some applications of RC circuits
When you use a flash camera, it takes a few seconds to charge the capacitor that powers the flash. The light flash discharges the capacitor in a tiny fraction of a second. Why does charging take longer than discharging? This question and several other phenomena that involve charging and discharging capacitors are discussed in this module.
Circuits with Resistance and Capacitance
An RC circuit is a circuit containing resistance and capacitance. As presented in Capacitance, the capacitor is an electrical component that stores electric charge, storing energy in an electric field.
Figure 10.38(a) shows a simple RC circuit that employs a dc (direct current) voltage source

Charging a Capacitor
We can use Kirchhoff’s loop rule to understand the charging of the capacitor. This results in the equation
This differential equation can be integrated to find an equation for the charge on the capacitor as a function of time.
Let
Simplifying results in an equation for the charge on the charging capacitor as a function of time:
A graph of the charge on the capacitor versus time is shown in Figure 10.39(a). First note that as time approaches infinity, the exponential goes to zero, so the charge approaches the maximum charge
At time
As the charge on the capacitor increases, the current through the resistor decreases, as shown in Figure 10.39(b). The current through the resistor can be found by taking the time derivative of the charge.
At time

Figure 10.39(c) and Figure 10.39(d) show the voltage differences across the capacitor and the resistor, respectively. As the charge on the capacitor increases, the current decreases, as does the voltage difference across the resistor
Discharging a Capacitor
When the switch in Figure 10.38(a) is moved to position B, the circuit reduces to the circuit in part (c), and the charged capacitor is allowed to discharge through the resistor. A graph of the charge on the capacitor as a function of time is shown in Figure 10.40(a). Using Kirchhoff’s loop rule to analyze the circuit as the capacitor discharges results in the equation
Here, Q is the initial charge on the capacitor and
The current as a function of time can be found by taking the time derivative of the charge:
The negative sign shows that the current flows in the opposite direction of the current found when the capacitor is charging. Figure 10.40(b) shows an example of a plot of charge versus time and current versus time. A plot of the voltage difference across the capacitor and the voltage difference across the resistor as a function of time are shown in parts (c) and (d) of the figure. Note that the magnitudes of the charge, current, and voltage all decrease exponentially, approaching zero as time increases.

Now we can explain why the flash camera mentioned at the beginning of this section takes so much longer to charge than discharge: The resistance while charging is significantly greater than while discharging. The internal resistance of the battery accounts for most of the resistance while charging. As the battery ages, the increasing internal resistance makes the charging process even slower.
Example
The Relaxation Oscillator
One application of an RC circuit is the relaxation oscillator, as shown below. The relaxation oscillator consists of a voltage source, a resistor, a capacitor, and a neon lamp. The neon lamp acts like an open circuit (infinite resistance) until the potential difference across the neon lamp reaches a specific voltage. At that voltage, the lamp acts like a short circuit (zero resistance), and the capacitor discharges through the neon lamp and produces light. In the relaxation oscillator shown, the voltage source charges the capacitor until the voltage across the capacitor is 80 V. When this happens, the neon in the lamp breaks down and allows the capacitor to discharge through the lamp, producing a bright flash. After the capacitor fully discharges through the neon lamp, it begins to charge again, and the process repeats. Assuming that the time it takes the capacitor to discharge is negligible, what is the time interval between flashes?
Strategy
The time period can be found from considering the equation
Solution
Show Answer
The neon lamp flashes when the voltage across the capacitor reaches 80 V. The RC time constant is equal to
Significance
One application of the relaxation oscillator is for controlling indicator lights that flash at a frequency determined by the values for R and C. In this example, the neon lamp will flash every 8.13 seconds, a frequency of
RC circuits have many applications. They can be used effectively as timers for applications such as intermittent windshield wipers, pace makers, and strobe lights. Some models of intermittent windshield wipers use a variable resistor to adjust the interval between sweeps of the wiper. Increasing the resistance increases the RC time constant, which increases the time between the operation of the wipers.
Another application is the pacemaker. The heart rate is normally controlled by electrical signals, which cause the muscles of the heart to contract and pump blood. When the heart rhythm is abnormal (the heartbeat is too high or too low), pace makers can be used to correct this abnormality. Pacemakers have sensors that detect body motion and breathing to increase the heart rate during physical activities, thus meeting the increased need for blood and oxygen, and an RC timing circuit can be used to control the time between voltage signals to the heart.
Looking ahead to the study of ac circuits (Alternating-Current Circuits), ac voltages vary as sine functions with specific frequencies. Periodic variations in voltage, or electric signals, are often recorded by scientists. These voltage signals could come from music recorded by a microphone or atmospheric data collected by radar. Occasionally, these signals can contain unwanted frequencies known as “noise.” RC filters can be used to filter out the unwanted frequencies.
In the study of electronics, a popular device known as a 555 timer provides timed voltage pulses. The time between pulses is controlled by an RC circuit. These are just a few of the countless applications of RC circuits.
Example
Intermittent Windshield Wipers
A relaxation oscillator is used to control a pair of windshield wipers. The relaxation oscillator consists of a 10.00-mF capacitor and a
Strategy
The resistance considers the equation
Solution
Show Answer
The output voltage will be 10.00 V and the voltage of the battery is 12.00 V. The capacitance is given as 10.00 mF. Solving for the resistance yields
Significance
Increasing the resistance increases the time delay between operations of the windshield wipers. When the resistance is zero, the windshield wipers run continuously. At the maximum resistance, the period of the operation of the wipers is:
The RC circuit has thousands of uses and is a very important circuit to study. Not only can it be used to time circuits, it can also be used to filter out unwanted frequencies in a circuit and used in power supplies, like the one for your computer, to help turn ac voltage to dc voltage.
Summary
- An RC circuit is one that has both a resistor and a capacitor.
- The time constant
for an RC circuit is - When an initially uncharged
capacitor in series with a resistor is charged by a dc voltage source, the capacitor asymptotically approaches the maximum charge. - As the charge on the capacitor increases, the current exponentially decreases from the initial current:
- If a capacitor with an initial charge Q is discharged through a resistor starting at
, then its charge decreases exponentially. The current flows in the opposite direction, compared to when it charges, and the magnitude of the charge decreases with time.
Conceptual Questions
A battery, switch, capacitor, and lamp are connected in series. Describe what happens to the lamp when the switch is closed.
When making an ECG measurement, it is important to measure voltage variations over small time intervals. The time is limited by the RC constant of the circuit—it is not possible to measure time variations shorter than RC. How would you manipulate R and C in the circuit to allow the necessary measurements?
Show Solution
The time constant can be shortened by using a smaller resistor and/or a smaller capacitor. Care should be taken when reducing the resistance because the initial current will increase as the resistance decreases.
Problems
The timing device in an automobile’s intermittent wiper system is based on an RC time constant and utilizes a
Show Solution
A heart pacemaker fires 72 times a minute, each time a 25.0-nF capacitor is charged (by a battery in series with a resistor) to 0.632 of its full voltage. What is the value of the resistance?
The duration of a photographic flash is related to an RC time constant, which is
Show Solution
a.
A 2.00- and a
A
Show Solution
a. 12.3 mA; b.
A heart defibrillator being used on a patient has an RC time constant of 10.0 ms due to the resistance of the patient and the capacitance of the defibrillator. (a) If the defibrillator has a capacitance of
An ECG monitor must have an RC time constant less than
Show Solution
a.
Using the exact exponential treatment, determine how much time is required to charge an initially uncharged 100-pF capacitor through a
If you wish to take a picture of a bullet traveling at 500 m/s, then a very brief flash of light produced by an RC discharge through a flash tube can limit blurring. Assuming 1.00 mm of motion during one RC constant is acceptable, and given that the flash is driven by a
Show Solution
Glossary
- RC circuit
- circuit that contains both a resistor and a capacitor
Licenses and Attributions
RC Circuits. Authored by: OpenStax College. Located at: https://openstax.org/books/university-physics-volume-2/pages/10-5-rc-circuits. License: CC BY: Attribution. License Terms: Download for free at https://openstax.org/books/university-physics-volume-2/pages/1-introduction