Chapter 14. Inductance
14.1 Mutual Inductance
Learning Objectives
By the end of this section, you will be able to:
- Correlate two nearby circuits that carry time-varying currents with the emf induced in each circuit
- Describe examples in which mutual inductance may or may not be desirable
Inductance is the property of a device that tells us how effectively it induces an emf in another device. In other words, it is a physical quantity that expresses the effectiveness of a given device.
When two circuits carrying time-varying currents are close to one another, the magnetic flux through each circuit varies because of the changing current I in the other circuit. Consequently, an emf is induced in each circuit by the changing current in the other. This type of emf is therefore called a mutually induced emf, and the phenomenon that occurs is known as mutual inductance (M). As an example, let’s consider two tightly wound coils (Figure 14.2). Coils 1 and 2 have

The mutual inductance
Similarly, the mutual inductance of coil 1 with respect to coil 2 is
Like capacitance, mutual inductance is a geometric quantity. It depends on the shapes and relative positions of the two coils, and it is independent of the currents in the coils. The SI unit for mutual inductance M is called the henry (H) in honor of Joseph Henry (1799–1878), an American scientist who discovered induced emf independently of Faraday. Thus, we have
The emf developed in either coil is found by combining Faraday’s law and the definition of mutual inductance. Since
where we have used the fact that M is a time-independent constant because the geometry is time-independent. Similarly, we have
In Equation 14.5, we can see the significance of the earlier description of mutual inductance (M) as a geometric quantity. The value of M neatly encapsulates the physical properties of circuit elements and allows us to separate the physical layout of the circuit from the dynamic quantities, such as the emf and the current. Equation 14.5 defines the mutual inductance in terms of properties in the circuit, whereas the previous definition of mutual inductance in Equation 14.1 is defined in terms of the magnetic flux experienced, regardless of circuit elements. You should be careful when using Equation 14.4 and Equation 14.5 because
A large mutual inductance M may or may not be desirable. We want a transformer to have a large mutual inductance. But an appliance, such as an electric clothes dryer, can induce a dangerous emf on its metal case if the mutual inductance between its coils and the case is large. One way to reduce mutual inductance is to counter-wind coils to cancel the magnetic field produced (Figure 14.3).

Digital signal processing is another example in which mutual inductance is reduced by counter-winding coils. The rapid on/off emf representing 1s and 0s in a digital circuit creates a complex time-dependent magnetic field. An emf can be generated in neighboring conductors. If that conductor is also carrying a digital signal, the induced emf may be large enough to switch 1s and 0s, with consequences ranging from inconvenient to disastrous.
Example
Mutual Inductance
Figure 14.4 shows a coil of

Strategy
There is no magnetic field outside the solenoid, and the field inside has magnitude
Solution
Show Answer
- The magnetic flux
through the surrounding coil is
Now from Equation 14.3, the mutual inductance is
- Using the previous expression and the given values, the mutual inductance is
Thus, from Equation 14.4, the emf induced in the surrounding coil is
Significance
Notice that M in part (a) is independent of the radius
Check Your Understanding
A current
Show Solution
Summary
- Inductance is the property of a device that expresses how effectively it induces an emf in another device.
- Mutual inductance is the effect of two devices inducing emfs in each other.
- A change in current
in one circuit induces an emf in the second:
where M is defined to be the mutual inductance between the two circuits and the minus sign is due to Lenz’s law. - Symmetrically, a change in current
through the second circuit induces an emf in the first:
where M is the same mutual inductance as in the reverse process.
Conceptual Questions
Show that
Show Solution
A 10-H inductor carries a current of 20 A. Describe how a 50-V emf can be induced across it.
The ignition circuit of an automobile is powered by a 12-V battery. How are we able to generate large voltages with this power source?
Show Solution
The induced current from the 12-V battery goes through an inductor, generating a large voltage.
When the current through a large inductor is interrupted with a switch, an arc appears across the open terminals of the switch. Explain.
Problems
When the current in one coil changes at a rate of 5.6 A/s, an emf of
An emf of
Show Solution
Two coils close to each other have a mutual inductance of 32 mH. If the current in one coil decays according to
A coil of 40 turns is wrapped around a long solenoid of cross-sectional area
Show Solution
a.
A 600-turn solenoid is 0.55 m long and 4.2 cm in diameter. Inside the solenoid, a small
A toroidal coil has a mean radius of 16 cm and a cross-sectional area of
Show Solution
A solenoid of
Glossary
- henry (H)
- unit of inductance,
; it is also expressed as a volt second per ampere
- inductance
- property of a device that tells how effectively it induces an emf in another device
- mutual inductance
- geometric quantity that expresses how effective two devices are at inducing emfs in one another
Licenses and Attributions
Mutual Inductance. Authored by: OpenStax College. Located at: https://openstax.org/books/university-physics-volume-2/pages/14-1-mutual-inductance. License: CC BY: Attribution. License Terms: Download for free at https://openstax.org/books/university-physics-volume-2/pages/1-introduction