Chapter 5. Electric Charges and Fields
5.3 Coulomb’s Law
Learning Objectives
By the end of this section, you will be able to:
- Describe the electric force, both qualitatively and quantitatively
- Calculate the force that charges exert on each other
- Determine the direction of the electric force for different source charges
- Correctly describe and apply the superposition principle for multiple source charges
Experiments with electric charges have shown that if two objects each have electric charge, then they exert an electric force on each other. The magnitude of the force is linearly proportional to the net charge on each object and inversely proportional to the square of the distance between them. (Interestingly, the force does not depend on the mass of the objects.) The direction of the force vector is along the imaginary line joining the two objects and is dictated by the signs of the charges involved.
Let
the net electric charges of the two objects; the vector displacement from to .
The electric force
This proportionality becomes an equality with the introduction of a proportionality constant. For reasons that will become clear in a later chapter, the proportionality constant that we use is actually a collection of constants. (We discuss this constant shortly.)
Coulomb’s Law
The magnitude of the electric force (or Coulomb force) between two electrically charged particles is equal to
We use absolute value signs around the product

It is important to note that the electric force is not constant; it is a function of the separation distance between the two charges. If either the test charge or the source charge (or both) move, then
Finally, the new constant
These units are required to give the force in Coulomb’s law the correct units of newtons. Note that in Coulomb’s law, the permittivity of vacuum is only part of the proportionality constant. For convenience, we often define a Coulomb’s constant:
Example
The Force on the Electron in Hydrogen
A hydrogen atom consists of a single proton and a single electron. The proton has a charge of

Strategy
For the purposes of this example, we are treating the electron and proton as two point particles, each with an electric charge, and we are told the distance between them; we are asked to calculate the force on the electron. We thus use Coulomb’s law.
Solution
Show Answer
Our two charges and the distance between them are,
The magnitude of the force on the electron is
As for the direction, since the charges on the two particles are opposite, the force is attractive; the force on the electron points radially directly toward the proton, everywhere in the electron’s orbit. The force is thus expressed as
Significance
This is a three-dimensional system, so the electron (and therefore the force on it) can be anywhere in an imaginary spherical shell around the proton. In this “classical” model of the hydrogen atom, the electrostatic force on the electron points in the inward centripetal direction, thus maintaining the electron’s orbit. But note that the quantum mechanical model of hydrogen (discussed in Quantum Mechanics) is utterly different.
Check Your Understanding
What would be different if the electron also had a positive charge?
Show Solution
The force would point outward.
Multiple Source Charges
The analysis that we have done for two particles can be extended to an arbitrary number of particles; we simply repeat the analysis, two charges at a time. Specifically, we ask the question: Given N charges (which we refer to as source charge), what is the net electric force that they exert on some other point charge (which we call the test charge)? Note that we use these terms because we can think of the test charge being used to test the strength of the force provided by the source charges.
Like all forces that we have seen up to now, the net electric force on our test charge is simply the vector sum of each individual electric force exerted on it by each of the individual test charges. Thus, we can calculate the net force on the test charge Q by calculating the force on it from each source charge, taken one at a time, and then adding all those forces together (as vectors). This ability to simply add up individual forces in this way is referred to as the principle of superposition, and is one of the more important features of the electric force. In mathematical form, this becomes
In this expression, Q represents the charge of the particle that is experiencing the electric force

(Note that the force vector
There is a complication, however. Just as the source charges each exert a force on the test charge, so too (by Newton’s third law) does the test charge exert an equal and opposite force on each of the source charges. As a consequence, each source charge would change position. However, by Equation 5.2, the force on the test charge is a function of position; thus, as the positions of the source charges change, the net force on the test charge necessarily changes, which changes the force, which again changes the positions. Thus, the entire mathematical analysis quickly becomes intractable. Later, we will learn techniques for handling this situation, but for now, we make the simplifying assumption that the source charges are fixed in place somehow, so that their positions are constant in time. (The test charge is allowed to move.) With this restriction in place, the analysis of charges is known as electrostatics, where “statics” refers to the constant (that is, static) positions of the source charges and the force is referred to as an electrostatic force.
Example
The Net Force from Two Source Charges
Three different, small charged objects are placed as shown in Figure 5.17. The charges

Strategy
We use Coulomb’s law again. The way the question is phrased indicates that
Solution
Show Answer
We have two source charges (
We can’t add these forces directly because they don’t point in the same direction:
where
and
We find that
at an angle of
that is,
Significance
Notice that when we substituted the numerical values of the charges, we did not include the negative sign of either
It’s also worth noting that the only new concept in this example is how to calculate the electric forces; everything else (getting the net force from its components, breaking the forces into their components, finding the direction of the net force) is the same as force problems you have done earlier.
Check Your Understanding
What would be different if
Show Solution
The net force would point
Summary
- Coulomb’s law gives the magnitude of the force between point charges. It is
where and are two point charges separated by a distance r. This Coulomb force is extremely basic, since most charges are due to point-like particles. It is responsible for all electrostatic effects and underlies most macroscopic forces.
Conceptual Questions
Would defining the charge on an electron to be positive have any effect on Coulomb’s law?
An atomic nucleus contains positively charged protons and uncharged neutrons. Since nuclei do stay together, what must we conclude about the forces between these nuclear particles?
Show Solution
The force holding the nucleus together must be greater than the electrostatic repulsive force on the protons.
Is the force between two fixed charges influenced by the presence of other charges?
Problems
Two point particles with charges
Two charges
Show Solution
a. charge 1 is
b.
;
c.
In a salt crystal, the distance between adjacent sodium and chloride ions is
Protons in an atomic nucleus are typically
Show Solution
Suppose Earth and the Moon each carried a net negative charge −Q. Approximate both bodies as point masses and point charges.
(a) What value of Q is required to balance the gravitational attraction between Earth and the Moon?
(b) Does the distance between Earth and the Moon affect your answer? Explain.
(c) How many electrons would be needed to produce this charge?
Point charges
Show Solution
Where must
Two small balls, each of mass 5.0 g, are attached to silk threads 50 cm long, which are in turn tied to the same point on the ceiling, as shown below. When the balls are given the same charge Q, the threads hang at
Show Solution
The tension is
The charges can be positive or negative, but both have to be the same sign.
Point charges
The net excess charge on two small spheres (small enough to be treated as point charges) is Q. Show that the force of repulsion between the spheres is greatest when each sphere has an excess charge Q/2. Assume that the distance between the spheres is so large compared with their radii that the spheres can be treated as point charges.
Show Solution
Let the charge on one of the spheres be nQ, where n is a fraction between 0 and 1. In the numerator of Coulomb’s law, the term involving the charges is
Two small, identical conducting spheres repel each other with a force of 0.050 N when they are 0.25 m apart. After a conducting wire is connected between the spheres and then removed, they repel each other with a force of 0.060 N. What is the original charge on each sphere?
A charge
Show Solution
Define right to be the positive direction and hence left is the negative direction, then
What is the net electric force on the charge located at the lower right-hand corner of the triangle shown here?
Two fixed particles, each of charge
Show Solution
The particles form triangle of sides 13, 13, and 24 cm. The x-components cancel, whereas there is a contribution to the y-component from both charges 24 cm apart. The y-axis passing through the third charge bisects the 24-cm line, creating two right triangles of sides 5, 12, and 13 cm.
The charges
What is the force on the charge q at the lower-right-hand corner of the square shown here?
Show Solution
The diagonal is
Point charges
Glossary
- Coulomb force
- another term for the electrostatic force
- Coulomb’s law
- mathematical equation calculating the electrostatic force vector between two charged particles
- electrostatic force
- amount and direction of attraction or repulsion between two charged bodies; the assumption is that the source charges remain motionless
- electrostatics
- study of charged objects which are not in motion
- permittivity of vacuum
- also called the permittivity of free space, and constant describing the strength of the electric force in a vacuum
- principle of superposition
- useful fact that we can simply add up all of the forces due to charges acting on an object
Licenses and Attributions
Coulomb’s Law. Authored by: OpenStax College. Located at: https://openstax.org/books/university-physics-volume-2/pages/5-3-coulombs-law. License: CC BY: Attribution. License Terms: Download for free at https://openstax.org/books/university-physics-volume-2/pages/1-introduction