Memory

Storage

Learning Objectives

  • Describe the three stages of memory storage
  • Describe and distinguish between implicit and explicit memory and semantic and episodic memory

Once the information has been encoded, we somehow have to retain it. Our brains take the encoded information and place it in storage. Storage is the creation of a permanent record of information.

In order for a memory to go into storage (i.e., long-term memory), it has to pass through three distinct stages: Sensory Memory, Short-Term Memory, and finally Long-Term Memory. These stages were first proposed by Richard Atkinson and Richard Shiffrin (1968). Their model of human memory (Figure 1), called Atkinson-Shiffrin (A-S), is based on the belief that we process memories in the same way that a computer processes information.

A flow diagram consists of four boxes with connecting arrows. The first box is labeled “sensory input.” An arrow leads to the second box, which is labeled “sensory memory.” An arrow leads to the third box which is labeled “short-term memory (STM).” An arrow points to the fourth box, labeled “long-term memory (LTM),” and an arrow points in the reverse direction from the fourth to the third box. Above the short-term memory box, an arrow leaves the top-right of the box and curves around to point back to the top-left of the box; this arrow is labeled “rehearsal.” Both the “sensory memory” and “short-term memory” boxes have an arrow beneath them pointing to the text “information not transferred is lost.”
Figure 1. According to the Atkinson-Shiffrin model of memory, information passes through three distinct stages in order for it to be stored in long-term memory.

But A-S is just one model of memory. Others, such as Baddeley and Hitch (1974), have proposed a model where short-term memory itself has different forms. In this model, storing memories in short-term memory is like opening different files on a computer and adding information. The type of short-term memory (or computer file) depends on the type of information received. There are memories in visual-spatial form, as well as memories of spoken or written material, and they are stored in three short-term systems: a visuospatial sketchpad, an episodic buffer, and a phonological loop. According to Baddeley and Hitch, a central executive part of memory supervises or controls the flow of information to and from the three short-term systems.

Sensory Memory

In the Atkinson-Shiffrin model, stimuli from the environment are processed first in sensory memory: storage of brief sensory events, such as sights, sounds, and tastes. It is very brief storage—up to a couple of seconds. We are constantly bombarded with sensory information. We cannot absorb all of it, or even most of it. And most of it has no impact on our lives. For example, what was your professor wearing the last class period? As long as the professor was dressed appropriately, it does not really matter what she was wearing. Sensory information about sights, sounds, smells, and even textures, which we do not view as valuable information, we discard. If we view something as valuable, the information will move into our short-term memory system.

One study of sensory memory researched the significance of valuable information on short-term memory storage. J. R. Stroop discovered a memory phenomenon in the 1930s: you will name a color more easily if it appears printed in that color, which is called the Stroop effect. In other words, the word “red” will be named more quickly, regardless of the color the word appears in, than any word that is colored red. Try an experiment: name the colors of the words you are given in Figure 2. Do not read the words, but say the color the word is printed in. For example, upon seeing the word “yellow” in green print, you should say “green,” not “yellow.” This experiment is fun, but it’s not as easy as it seems.

Several names of colors appear in a font color that is different from the name of the color. For example, the word “red” is colored blue.
Figure 2. The Stroop effect describes why it is difficult for us to name a color when the word and the color of the word are different.

Short-Term Memory

Short-term memory (STM) is a temporary storage system that processes incoming sensory memory; sometimes it is called working memory. Short-term memory takes information from sensory memory and sometimes connects that memory to something already in long-term memory. Short-term memory storage lasts about 20 seconds. George Miller (1956), in his research on the capacity of memory, found that most people can retain about 7 items in STM. Some remember 5, some 9, so he called the capacity of STM 7 plus or minus 2.

Think of short-term memory as the information you have displayed on your computer screen—a document, a spreadsheet, or a web page. Then, information in short-term memory goes to long-term memory (you save it to your hard drive), or it is discarded (you delete a document or close a web browser). This step of rehearsal, the conscious repetition of information to be remembered, to move STM into long-term memory is called memory consolidation.

You may find yourself asking, “How much information can our memory handle at once?” To explore the capacity and duration of your short-term memory, have a partner read the strings of random numbers (Figure 3) out loud to you, beginning each string by saying, “Ready?” and ending each by saying, “Recall,” at which point you should try to write down the string of numbers from memory.

A series of numbers includes two rows, with six numbers in each row. From left to right, the numbers increase from four digits to five, six, seven, eight, and nine digits. The first row includes “9754,” “68259,” “913825,” “5316842,” “86951372,” and “719384273,” and the second row includes “6419,” “67148,” “648327,” “5963827,” “51739826,” and “163875942.”
Figure 3. Work through this series of numbers using the recall exercise explained above to determine the longest string of digits that you can store.

Note the longest string at which you got the series correct. For most people, this will be close to 7, Miller’s famous 7 plus or minus 2. Recall is somewhat better for random numbers than for random letters (Jacobs, 1887), and also often slightly better for information we hear (acoustic encoding) rather than see (visual encoding) (Anderson, 1969).

Long-term Memory

Long-term memory (LTM) is the continuous storage of information. Unlike short-term memory, the storage capacity of LTM has no limits. It encompasses all the things you can remember that happened more than just a few minutes ago to all of the things that you can remember that happened days, weeks, and years ago. In keeping with the computer analogy, the information in your LTM would be like the information you have saved on the hard drive. It isn’t there on your desktop (your short-term memory), but you can pull up this information when you want it, at least most of the time. Not all long-term memories are strong memories. Some memories can only be recalled through prompts. For example, you might easily recall a fact— “What is the capital of the United States?”—or a procedure—“How do you ride a bike?”—but you might struggle to recall the name of the restaurant you had dinner when you were on vacation in France last summer. A prompt, such as that the restaurant was named after its owner, who spoke to you about your shared interest in soccer, may help you recall the name of the restaurant.

Long-term memory is divided into two types: explicit and implicit (Figure 4). Understanding the different types is important because a person’s age or particular types of brain trauma or disorders can leave certain types of LTM intact while having disastrous consequences for other types. Explicit memories are those we consciously try to remember and recall. For example, if you are studying for your chemistry exam, the material you are learning will be part of your explicit memory. (Note: Sometimes, but not always, the terms explicit memory and declarative memory are used interchangeably.)

Implicit memories are memories that are not part of our consciousness. They are memories formed from behaviors. Implicit memory is also called non-declarative memory.

A diagram consists of three rows of boxes. The box in the top row is labeled “long-term memory”; a line from the box separates into two lines leading to two boxes on the second row, labeled “explicit (declarative)” and “implicit (non-declarative).” From each of the second row boxes, lines split and lead to two additional boxes. From the “explicit” box are two boxes labeled “episodic (experienced events)” and “semantic (knowledge and concepts).” From the “implicit” box are two boxes labeled “procedural (skills and actions)” and “emotional conditioning.”
Figure 4. There are two components of long-term memory: explicit and implicit. Explicit memory includes episodic and semantic memory. Implicit memory includes procedural memory and things learned through conditioning.

Procedural memory is a type of implicit memory: it stores information about how to do things. It is the memory for skilled actions, such as how to brush your teeth, how to drive a car, how to swim the crawl (freestyle) stroke. If you are learning how to swim freestyle, you practice the stroke: how to move your arms, how to turn your head to alternate breathing from side to side, and how to kick your legs. You would practice this many times until you become good at it. Once you learn how to swim freestyle and your body knows how to move through the water, you will never forget how to swim freestyle, even if you do not swim for a couple of decades. Similarly, if you present an accomplished guitarist with a guitar, even if he has not played in a long time, he will still be able to play quite well.

Explicit memory has to do with the storage of facts and events we personally experienced. Explicit (declarative) memory has two parts: semantic memory and episodic memory. Semantic means having to do with language and knowledge about language. An example would be the question “what does argumentative mean?” Stored in our semantic memory is knowledge about words, concepts, and language-based knowledge and facts. For example, answers to the following questions are stored in your semantic memory:

  • Who was the first President of the United States?
  • What is democracy?
  • What is the longest river in the world?

Episodic memory is information about events we have personally experienced. The concept of episodic memory was first proposed about 40 years ago (Tulving, 1972). Since then, Tulving and others have looked at scientific evidence and reformulated the theory. Currently, scientists believe that episodic memory is memory about happenings in particular places at particular times, the what, where, and when of an event (Tulving, 2002). It involves recollection of visual imagery as well as the feeling of familiarity (Hassabis & Maguire, 2007).

Everyday Connection: Can You Remember Everything You Ever Did or Said?

Episodic memories are also called autobiographical memories. Let’s quickly test your autobiographical memory. What were you wearing exactly five years ago today? What did you eat for lunch on April 10, 2019? You probably find it difficult, if not impossible, to answer these questions. Can you remember every event you have experienced over the course of your life—meals, conversations, clothing choices, weather conditions, and so on? Most likely none of us could even come close to answering these questions; however, American actress Marilu Henner, best known for the television show Taxi, can remember. She has an amazing and highly superior autobiographical memory (Figure 7).

A photograph shows Marilu Henner.
Figure 7. Marilu Henner’s super autobiographical memory is known as hyperthymesia. (credit: Mark Richardson)

Very few people can recall events in this way; right now, only 12 known individuals have this ability, and only a few have been studied (Parker, Cahill & McGaugh 2006). And although hyperthymesia normally appears in adolescence, two children in the United States appear to have memories from well before their tenth birthdays.

If you’re interested in learning more, watch these Part 1 and Part 2 video clips on superior autobiographical memory from the television news show 60 Minutes.

Watch It

In this video, Hank Green explains several research studies that helped us better understand implicit memories.

You can view the transcript for “Why Is Riding a Bike “Just Like Riding a Bike?”” here (opens in new window).

Think It Over

  • Describe something you have learned that is now in your procedural memory. Discuss how you learned this information.
  • Describe something you learned in high school that is now in your semantic memory.
Licenses and Attributions (Click to expand)

CC licensed content, Shared previously

All rights reserved content

definition

License

Icon for the Creative Commons Attribution 4.0 International License

General Psychology Copyright © by OpenStax and Lumen Learning is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book