Chapter 30 Atomic Physics
30.9 The Pauli Exclusion Principle
Summary
- Define the composition of an atom along with its electrons, neutrons, and protons.
- Explain the Pauli exclusion principle and its application to the atom.
- Specify the shell and subshell symbols and their positions.
- Define the position of electrons in different shells of an atom.
- State the position of each element in the periodic table according to shell filling.
Multiple-Electron Atoms
All atoms except hydrogen are multiple-electron atoms. The physical and chemical properties of elements are directly related to the number of electrons a neutral atom has. The periodic table of the elements groups elements with similar properties into columns. This systematic organization is related to the number of electrons in a neutral atom, called the atomic number,
In 1925, the Austrian physicist Wolfgang Pauli (see Figure 1) proposed the following rule: No two electrons can have the same set of quantum numbers. That is, no two electrons can be in the same state. This statement is known as the Pauli exclusion principle, because it excludes electrons from being in the same state. The Pauli exclusion principle is extremely powerful and very broadly applicable. It applies to any identical particles with half-integral intrinsic spin—that is, having
Pauli Exclusion Principle
No two electrons can have the same set of quantum numbers. That is, no two electrons can be in the same state.

Let us examine how the exclusion principle applies to electrons in atoms. The quantum numbers involved were defined in Chapter 30.8 Quantum Numbers and Rules as
Since no two electrons can have the same set of quantum numbers, there are limits to how many of them can be in the same energy state. Note that

Shells and Subshells
Because of the Pauli exclusion principle, only hydrogen and helium can have all of their electrons in the
The probability clouds of electrons with the lowest value of
The table given below lists symbols traditionally used to denote shells and subshells.
Shell | Subshell | |
---|---|---|
Symbol | ||
1 | 0 | |
2 | 1 | |
3 | 2 | |
4 | 3 | |
5 | 4 | |
5 | ||
61 | ||
Table 2: Shell and Subshell Symbols |
To denote shells and subshells, we write

Counting the number of possible combinations of quantum numbers allowed by the exclusion principle, we can determine how many electrons it takes to fill each subshell and shell.
Example 1: How Many Electrons Can Be in This Shell?
List all the possible sets of quantum numbers for the
Strategy
Given
Solution
It is convenient to list the possible quantum numbers in a table, as shown below.

Discussion
It is laborious to make a table like this every time we want to know how many electrons can be in a shell or subshell. There exist general rules that are easy to apply, as we shall now see.
The number of electrons that can be in a subshell depends entirely on the value of
For example, the
For example, for the first shell
Example 2: Subshells and Totals for n = 3
How many subshells are in the
Strategy
Subshells are determined by the value of
Solution
Since
The equation “maximum number of electrons that can be in a shell =
Discussion
The total number of electrons in the three possible subshells is thus the same as the formula
Shell Filling and the Periodic Table
Table 3 shows electron configurations for the first 20 elements in the periodic table, starting with hydrogen and its single electron and ending with calcium. The Pauli exclusion principle determines the maximum number of electrons allowed in each shell and subshell. But the order in which the shells and subshells are filled is complicated because of the large numbers of interactions between electrons.
Element | Number of electrons (Z) | Ground state configuration | |||||
---|---|---|---|---|---|---|---|
H | 1 | ||||||
He | 2 | ||||||
Li | 3 | ||||||
Be | 4 | “ | |||||
B | 5 | “ | |||||
C | 6 | “ | |||||
N | 7 | “ | |||||
O | 8 | “ | |||||
F | 9 | “ | |||||
Ne | 10 | “ | |||||
Na | 11 | “ | |||||
Mg | 12 | “ | “ | “ | |||
Al | 13 | “ | “ | “ | |||
Si | 14 | “ | “ | “ | |||
P | 15 | “ | “ | “ | |||
S | 16 | “ | “ | “ | |||
Cl | 17 | “ | “ | “ | |||
Ar | 18 | “ | “ | “ | |||
K | 19 | “ | “ | “ | |||
Ca | 20 | “ | “ | “ | “ | “ | |
Table 3: Electron Configurations of Elements Hydrogen Through Calcium |
Examining the above table, you can see that as the number of electrons in an atom increases from 1 in hydrogen to 2 in helium and so on, the lowest-energy shell gets filled first—that is, the
Figure 5 shows the periodic table of the elements, through element 118. Of special interest are elements in the main groups, namely, those in the columns numbered 1, 2, 13, 14, 15, 16, 17, and 18.

The number of electrons in the outermost subshell determines the atom’s chemical properties, since it is these electrons that are farthest from the nucleus and thus interact most with other atoms. If the outermost subshell can accept or give up an electron easily, then the atom will be highly reactive chemically. Each group in the periodic table is characterized by its outermost electron configuration. Perhaps the most familiar is Group 18 (Group VIII), the noble gases (helium, neon, argon, etc.). These gases are all characterized by a filled outer subshell that is particularly stable. This means that they have large ionization energies and do not readily give up an electron. Furthermore, if they were to accept an extra electron, it would be in a significantly higher level and thus loosely bound. Chemical reactions often involve sharing electrons. Noble gases can be forced into unstable chemical compounds only under high pressure and temperature.
Group 17 (Group VII) contains the halogens, such as fluorine, chlorine, iodine and bromine, each of which has one less electron than a neighboring noble gas. Each halogen has 5
Of course, other groups are also of interest. Carbon, silicon, and germanium, for example, have similar chemistries and are in Group 4 (Group IV). Carbon, in particular, is extraordinary in its ability to form many types of bonds and to be part of long chains, such as inorganic molecules. The large group of what are called transitional elements is characterized by the filling of the
PhET Explorations: Build an Atom
Build an atom out of protons, neutrons, and electrons, and see how the element, charge, and mass change. Then play a game to test your ideas!

Section Summary
- The state of a system is completely described by a complete set of quantum numbers. This set is written as
. - The Pauli exclusion principle says that no two electrons can have the same set of quantum numbers; that is, no two electrons can be in the same state.
- This exclusion limits the number of electrons in atomic shells and subshells. Each value of
corresponds to a shell, and each value of corresponds to a subshell. - The maximum number of electrons that can be in a subshell is
. - The maximum number of electrons that can be in a shell is
.
Conceptual Questions
1: Identify the shell, subshell, and number of electrons for the following: (a)
2: Which of the following are not allowed? State which rule is violated for any that are not allowed. (a)
Problem Exercises
1: (a) How many electrons can be in the
(b) What are its subshells, and how many electrons can be in each?
2: (a) What is the minimum value of 1 for a subshell that has 11 electrons in it?
(b) If this subshell is in the
3: (a) If one subshell of an atom has 9 electrons in it, what is the minimum value of
4: (a) List all possible sets of quantum numbers
(b) Show that the number of electrons in the shell equals
5: Which of the following spectroscopic notations are not allowed? (a)
6: Which of the following spectroscopic notations are allowed (that is, which violate none of the rules regarding values of quantum numbers)? (a)
7: (a) Using the Pauli exclusion principle and the rules relating the allowed values of the quantum numbers
(b) In a similar manner, prove that the maximum number of electrons in a shell is 2n2.
8: Integrated Concepts
Estimate the density of a nucleus by calculating the density of a proton, taking it to be a sphere 1.2 fm in diameter. Compare your result with the value estimated in this chapter.
9: Integrated Concepts
The electric and magnetic forces on an electron in the CRT in [link] are supposed to be in opposite directions. Verify this by determining the direction of each force for the situation shown. Explain how you obtain the directions (that is, identify the rules used).
10: (a) What is the distance between the slits of a diffraction grating that produces a first-order maximum for the first Balmer line at an angle of
(b) At what angle will the fourth line of the Balmer series appear in first order?
(c) At what angle will the second-order maximum be for the first line?
11: Integrated Concepts
A galaxy moving away from the earth has a speed of
12: Integrated Concepts
Calculate the velocity of a star moving relative to the earth if you observe a wavelength of 91.0 nm for ionized hydrogen capturing an electron directly into the lowest orbital (that is, a
13: Integrated Concepts
In a Millikan oil-drop experiment using a setup like that in Chapter 30.2 Figure 6, a 500-V potential difference is applied to plates separated by 2.50 cm. (a) What is the mass of an oil drop having two extra electrons that is suspended motionless by the field between the plates? (b) What is the diameter of the drop, assuming it is a sphere with the density of olive oil?
14: Integrated Concepts
What double-slit separation would produce a first-order maximum at
15: Integrated Concepts
In a laboratory experiment designed to duplicate Thomson’s determination of
16: Integrated Concepts
Find the value of
17: Integrated Concepts
Particles called muons exist in cosmic rays and can be created in particle accelerators. Muons are very similar to electrons, having the same charge and spin, but they have a mass 207 times greater. When muons are captured by an atom, they orbit just like an electron but with a smaller radius, since the mass in
(a) Calculate the radius of the
(b) Compare this with the 7.5-fm radius of a uranium nucleus. Note that since the muon orbits inside the electron, it falls into a hydrogen-like orbit. Since your answer is less than the radius of the nucleus, you can see that the photons emitted as the muon falls into its lowest orbit can give information about the nucleus.
18: Integrated Concepts
Calculate the minimum amount of energy in joules needed to create a population inversion in a helium-neon laser containing
19: Integrated Concepts
A carbon dioxide laser used in surgery emits infrared radiation with a wavelength of
(a) How many photons were required? You may assume flesh has the same heat of vaporization as water. (b) What was the minimum power output during the flash?
20: Integrated Concepts
Suppose an MRI scanner uses 100-MHz radio waves.
(a) Calculate the photon energy.
(b) How does this compare to typical molecular binding energies?
21: Integrated Concepts
(a) An excimer laser used for vision correction emits 193-nm UV. Calculate the photon energy in eV.
(b) These photons are used to evaporate corneal tissue, which is very similar to water in its properties. Calculate the amount of energy needed per molecule of water to make the phase change from liquid to gas. That is, divide the heat of vaporization in kJ/kg by the number of water molecules in a kilogram.
(c) Convert this to eV and compare to the photon energy. Discuss the implications.
22: Integrated Concepts
A neighboring galaxy rotates on its axis so that stars on one side move toward us as fast as 200 km/s, while those on the other side move away as fast as 200 km/s. This causes the EM radiation we receive to be Doppler shifted by velocities over the entire range of ±200 km/s. What range of wavelengths will we observe for the 656.0-nm line in the Balmer series of hydrogen emitted by stars in this galaxy. (This is called line broadening.)
23: Integrated Concepts
A pulsar is a rapidly spinning remnant of a supernova. It rotates on its axis, sweeping hydrogen along with it so that hydrogen on one side moves toward us as fast as 50.0 km/s, while that on the other side moves away as fast as 50.0 km/s. This means that the EM radiation we receive will be Doppler shifted over a range of
24: Integrated Concepts
Prove that the velocity of charged particles moving along a straight path through perpendicular electric and magnetic fields is
25: Unreasonable Results
(a) What voltage must be applied to an X-ray tube to obtain 0.0100-fm-wavelength X-rays for use in exploring the details of nuclei? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?
26: Unreasonable Results
A student in a physics laboratory observes a hydrogen spectrum with a diffraction grating for the purpose of measuring the wavelengths of the emitted radiation. In the spectrum, she observes a yellow line and finds its wavelength to be 589 nm. (a) Assuming this is part of the Balmer series, determine
27: Construct Your Own Problem
The solar corona is so hot that most atoms in it are ionized. Consider a hydrogen-like atom in the corona that has only a single electron. Construct a problem in which you calculate selected spectral energies and wavelengths of the Lyman, Balmer, or other series of this atom that could be used to identify its presence in a very hot gas. You will need to choose the atomic number of the atom, identify the element, and choose which spectral lines to consider.
28: Construct Your Own Problem
Consider the Doppler-shifted hydrogen spectrum received from a rapidly receding galaxy. Construct a problem in which you calculate the energies of selected spectral lines in the Balmer series and examine whether they can be described with a formula like that in the equation
Footnotes
- 1 It is unusual to deal with subshells having ll greater than 6, but when encountered, they continue to be labeled in alphabetical order.
Glossary
- atomic number
- the number of protons in the nucleus of an atom
- Pauli exclusion principle
- a principle that states that no two electrons can have the same set of quantum numbers; that is, no two electrons can be in the same state
- shell
- a probability cloud for electrons that has a single principal quantum number
- subshell
- the probability cloud for electrons that has a single angular momentum quantum number
Solutions
Problem Exercises
1: (a) 32. (b) 2 in s, 6 in p, 10 in d, and 14 in
3: (a) 2
(b)
5: (b)
(c) cannot have 3 electrons in
(d) cannot have 7 electrons in
7: (a) The number of different values of
(b) for each value of
to see that the expression in the box is
9: The electric force on the electron is up (toward the positively charged plate). The magnetic force is down (by the RHR).
11: 401 nm
13: (a)
(b)
15:
17: (a) 2.78 fm
(b) 0.37 of the nuclear radius.
19: (a)
(b) 2.52 MW
21: (a) 6.42 eV
(b)
(c) 0.454 eV, 14.1 times less than a single UV photon. Therefore, each photon will evaporate approximately 14 molecules of tissue. This gives the surgeon a rather precise method of removing corneal tissue from the surface of the eye.
23: 91.18 nm to 91.22 nm
25: (a)
(b) The voltage is extremely large compared with any practical value.
(c) The assumption of such a short wavelength by this method is unreasonable.