Chapter 28 Special Relativity
28.2 Simultaneity And Time Dilation
Summary
- Describe simultaneity.
- Describe time dilation.
- Calculate
. - Compare proper time and the observer’s measured time.
- Explain why the twin paradox is a false paradox.

Do time intervals depend on who observes them? Intuitively, we expect the time for a process, such as the elapsed time for a foot race, to be the same for all observers. Our experience has been that disagreements over elapsed time have to do with the accuracy of measuring time. When we carefully consider just how time is measured, however, we will find that elapsed time depends on the relative motion of an observer with respect to the process being measured.
Simultaneity
Consider how we measure elapsed time. If we use a stopwatch, for example, how do we know when to start and stop the watch? One method is to use the arrival of light from the event, such as observing a light turning green to start a drag race. The timing will be more accurate if some sort of electronic detection is used, avoiding human reaction times and other complications.
Now suppose we use this method to measure the time interval between two flashes of light produced by flash lamps. (See Figure 2.) Two flash lamps with observer A midway between them are on a rail car that moves to the right relative to observer B. Observer B arranges for the light flashes to be emitted just as A passes B, so that both A and B are equidistant from the lamps when the light is emitted. Observer B measures the time interval between the arrival of the light flashes. According to postulate 2, the speed of light is not affected by the motion of the lamps relative to B. Therefore, light travels equal distances to him at equal speeds. Thus observer B measures the flashes to be simultaneous.

Now consider what observer B sees happen to observer A. Observer B perceives light from the right reaching observer A before light from the left, because she has moved towards that flash lamp, lessening the distance the light must travel and reducing the time it takes to get to her. Light travels at speed
Now consider what observer A sees happening. She sees the light from the right arriving before light from the left. Since both lamps are the same distance from her in her reference frame, from her perspective, the right flash occurred before the left flash. Here a relative velocity between observers affects whether two events are observed to be simultaneous. Simultaneity is not absolute
This illustrates the power of clear thinking. We might have guessed incorrectly that if light is emitted simultaneously, then two observers halfway between the sources would see the flashes simultaneously. But careful analysis shows this not to be the case. Einstein was brilliant at this type of thought experiment (in German, “Gedankenexperiment”). He very carefully considered how an observation is made and disregarded what might seem obvious. The validity of thought experiments, of course, is determined by actual observation. The genius of Einstein is evidenced by the fact that experiments have repeatedly confirmed his theory of relativity.
In summary: Two events are defined to be simultaneous if an observer measures them as occurring at the same time (such as by receiving light from the events). Two events are not necessarily simultaneous to all observers.
Time Dilation
The consideration of the measurement of elapsed time and simultaneity leads to an important relativistic effect.
Time dilation
Time dilation is the phenomenon of time passing slower for an observer who is moving relative to another observer.
Suppose, for example, an astronaut measures the time it takes for light to cross her ship, bounce off a mirror, and return. (See Figure 3.) How does the elapsed time the astronaut measures compare with the elapsed time measured for the same event by a person on the Earth? Asking this question (another thought experiment) produces a profound result. We find that the elapsed time for a process depends on who is measuring it. In this case, the time measured by the astronaut is smaller than the time measured by the Earth-bound observer. The passage of time is different for the observers because the distance the light travels in the astronaut’s frame is smaller than in the Earth-bound frame. Light travels at the same speed in each frame, and so it will take longer to travel the greater distance in the Earth-bound frame.

To quantitatively verify that time depends on the observer, consider the paths followed by light as seen by each observer. (See Figure 3(c).) The astronaut sees the light travel straight across and back for a total distance of
This time has a separate name to distinguish it from the time measured by the Earth-bound observer.
Proper Time
Proper time
In the case of the astronaut observe the reflecting light, the astronaut measures proper time. The time measured by the Earth-bound observer is
To find the relationship between
Using the Pythagorean Theorem, the distance
Substituting
We square this equation, which yields
Note that if we square the first expression we had for
Gathering terms, we solve for
Thus,
Taking the square root yields an important relationship between elapsed times:
where
This equation for
Note that if the relative velocity is much less than the speed of light ([latex]{v
The equation
There is considerable experimental evidence that the equation
Example 1: Calculating Δt for a Relativistic Event: How Long Does a Speedy Muon Live?
Suppose a cosmic ray colliding with a nucleus in the Earth’s upper atmosphere produces a muon that has a velocity

Strategy
A clock moving with the system being measured observes the proper time, so the time we are given is
Solution
1) Identify the knowns.
2) Identify the unknown.
3) Choose the appropriate equation.
Use,
where
4) Plug the knowns into the equation.
First find
Use the calculated value of
Discussion
One implication of this example is that since
Another implication of the preceding example is that everything an astronaut does when moving at
Real-World Connections
It may seem that special relativity has little effect on your life, but it is probably more important than you realize. One of the most common effects is through the Global Positioning System (GPS). Emergency vehicles, package delivery services, electronic maps, and communications devices are just a few of the common uses of GPS, and the GPS system could not work without taking into account relativistic effects. GPS satellites rely on precise time measurements to communicate. The signals travel at relativistic speeds. Without corrections for time dilation, the satellites could not communicate, and the GPS system would fail within minutes.
The Twin Paradox
An intriguing consequence of time dilation is that a space traveler moving at a high velocity relative to the Earth would age less than her Earth-bound twin. Imagine the astronaut moving at such a velocity that
The situation would seem different to the astronaut. Because motion is relative, the spaceship would seem to be stationary and the Earth would appear to move. (This is the sensation you have when flying in a jet.) If the astronaut looks out the window of the spaceship, she will see time slow down on the Earth by a factor of

As with all paradoxes, the premise is faulty and leads to contradictory conclusions. In fact, the astronaut’s motion is significantly different from that of the Earth-bound twin. The astronaut accelerates to a high velocity and then decelerates to view the star system. To return to the Earth, she again accelerates and decelerates. The Earth-bound twin does not experience these accelerations. So the situation is not symmetric, and it is not correct to claim that the astronaut will observe the same effects as her Earth-bound twin. If you use special relativity to examine the twin paradox, you must keep in mind that the theory is expressly based on inertial frames, which by definition are not accelerated or rotating. Einstein developed general relativity to deal with accelerated frames and with gravity, a prime source of acceleration. You can also use general relativity to address the twin paradox and, according to general relativity, the astronaut will age less. Some important conceptual aspects of general relativity are discussed in Chapter 34.2 General Relativity and Quantum Gravity of this course.
In 1971, American physicists Joseph Hafele and Richard Keating verified time dilation at low relative velocities by flying extremely accurate atomic clocks around the Earth on commercial aircraft. They measured elapsed time to an accuracy of a few nanoseconds and compared it with the time measured by clocks left behind. Hafele and Keating’s results were within experimental uncertainties of the predictions of relativity. Both special and general relativity had to be taken into account, since gravity and accelerations were involved as well as relative motion.
Check Your Understanding
1: What is
2: A particle travels at
Section Summary
- Two events are defined to be simultaneous if an observer measures them as occurring at the same time. They are not necessarily simultaneous to all observers—simultaneity is not absolute.
- Time dilation is the phenomenon of time passing slower for an observer who is moving relative to another observer.
- Observers moving at a relative velocity
do not measure the same elapsed time for an event. Proper time is the time measured by an observer at rest relative to the event being observed. Proper time is related to the time measured by an Earth-bound observer by the equationwhere
- The equation relating proper time and time measured by an Earth-bound observer implies that relative velocity cannot exceed the speed of light.
- The twin paradox asks why a twin traveling at a relativistic speed away and then back towards the Earth ages less than the Earth-bound twin. The premise to the paradox is faulty because the traveling twin is accelerating. Special relativity does not apply to accelerating frames of reference.
- Time dilation is usually negligible at low relative velocities, but it does occur, and it has been verified by experiment.
Conceptual Questions
1: Does motion affect the rate of a clock as measured by an observer moving with it? Does motion affect how an observer moving relative to a clock measures its rate?
2: To whom does the elapsed time for a process seem to be longer, an observer moving relative to the process or an observer moving with the process? Which observer measures proper time?
3: How could you travel far into the future without aging significantly? Could this method also allow you to travel into the past?
Problems & Exercises
1: (a) What is
2: (a) What is
3: Particles called
4: Suppose a particle called a kaon is created by cosmic radiation striking the atmosphere. It moves by you at
5: A neutral
6: A neutron lives 900 s when at rest relative to an observer. How fast is the neutron moving relative to an observer who measures its life span to be 2065 s?
7: If relativistic effects are to be less than 1%, then
8: If relativistic effects are to be less than 3%, then
9: (a) At what relative velocity is
10: (a) At what relative velocity is
11: Unreasonable Results
(a) Find the value of
Glossary
- time dilation
- the phenomenon of time passing slower to an observer who is moving relative to another observer
- proper time
. the time measured by an observer at rest relative to the event being observed: , where
- twin paradox
- this asks why a twin traveling at a relativistic speed away and then back towards the Earth ages less than the Earth-bound twin. The premise to the paradox is faulty because the traveling twin is accelerating, and special relativity does not apply to accelerating frames of reference
Solutions
Check Your Understanding
1:
2:
Problems & Exercises
1: (a) 1.0328
(b) 1.15
3:
5:
7:
9: (a)
(b)
11: (a) 0.996
(b)
(c) Assumption that time is longer in moving ship is unreasonable.