Chapter 20 Electric Current, Resistance, and Ohm’s Law
20.2 Ohm’s Law: Resistance and Simple Circuits
Summary
- Explain the origin of Ohm’s law.
- Calculate voltages, currents, or resistances with Ohm’s law.
- Explain what an ohmic material is.
- Describe a simple circuit.
What drives current? We can think of various devices—such as batteries, generators, wall outlets, and so on—which are necessary to maintain a current. All such devices create a potential difference and are loosely referred to as voltage sources. When a voltage source is connected to a conductor, it applies a potential difference
Ohm’s Law
The current that flows through most substances is directly proportional to the voltage
This important relationship is known as Ohm’s law. It can be viewed as a cause-and-effect relationship, with voltage the cause and current the effect. This is an empirical law like that for friction—an experimentally observed phenomenon. Such a linear relationship doesn’t always occur.
Resistance and Simple Circuits
If voltage drives current, what impedes it? The electric property that impedes current (crudely similar to friction and air resistance) is called resistance RR size 12{R} {}. Collisions of moving charges with atoms and molecules in a substance transfer energy to the substance and limit current. Resistance is defined as inversely proportional to current, or
Thus, for example, current is cut in half if resistance doubles. Combining the relationships of current to voltage and current to resistance gives
This relationship is also called Ohm’s law. Ohm’s law in this form really defines resistance for certain materials. Ohm’s law (like Hooke’s law) is not universally valid. The many substances for which Ohm’s law holds are called ohmic. These include good conductors like copper and aluminum, and some poor conductors under certain circumstances. Ohmic materials have a resistance
Figure 1 shows the schematic for a simple circuit. A simple circuit has a single voltage source and a single resistor. The wires connecting the voltage source to the resistor can be assumed to have negligible resistance, or their resistance can be included in

Example 1: Calculating Resistance: An Automobile Headlight
What is the resistance of an automobile headlight through which 2.50 A flows when 12.0 V is applied to it?
Strategy
We can rearrange Ohm’s law as stated by
Solution
Rearranging
Discussion
This is a relatively small resistance, but it is larger than the cold resistance of the headlight. As we shall see in Chapter 20.3 Resistance and Resistivity, resistance usually increases with temperature, and so the bulb has a lower resistance when it is first switched on and will draw considerably more current during its brief warm-up period.
Resistances range over many orders of magnitude. Some ceramic insulators, such as those used to support power lines, have resistances of
Additional insight is gained by solving
This expression for

Making Connections: Conservation of Energy
In a simple electrical circuit, the sole resistor converts energy supplied by the source into another form. Conservation of energy is evidenced here by the fact that all of the energy supplied by the source is converted to another form by the resistor alone. We will find that conservation of energy has other important applications in circuits and is a powerful tool in circuit analysis.
PhET Explorations: Ohm’s Law
See how the equation form of Ohm’s law relates to a simple circuit. Adjust the voltage and resistance, and see the current change according to Ohm’s law. The sizes of the symbols in the equation change to match the circuit diagram.

Section Summary
- A simple circuit is one in which there is a single voltage source and a single resistance.
- One statement of Ohm’s law gives the relationship between current
, voltage , and resistance in a simple circuit to be . - Resistance has units of ohms (
), related to volts and amperes by . - There is a voltage or
drop across a resistor, caused by the current flowing through it, given by .
Conceptual Questions
1: The
2: How is the
Problems & Exercises
1: What current flows through the bulb of a 3.00-V flashlight when its hot resistance is
2: Calculate the effective resistance of a pocket calculator that has a 1.35-V battery and through which 0.200 mA flows.
3: What is the effective resistance of a car’s starter motor when 150 A flows through it as the car battery applies 11.0 V to the motor?
4: How many volts are supplied to operate an indicator light on a DVD player that has a resistance of
5: (a) Find the voltage drop in an extension cord having a
6: A power transmission line is hung from metal towers with glass insulators having a resistance of
Glossary
- Ohm’s law
- an empirical relation stating that the current I is proportional to the potential difference V, ∝ V; it is often written as I = V/R, where R is the resistance
- resistance
- the electric property that impedes current; for ohmic materials, it is the ratio of voltage to current, R = V/I
- ohm
- the unit of resistance, given by 1Ω = 1 V/A
- ohmic
- a type of a material for which Ohm’s law is valid
- simple circuit
- a circuit with a single voltage source and a single resistor
Solutions
Problems & Exercises
1: 0.833 A
3:
5: (a) 0.300 V
(b) 1.50 V
(c) The voltage supplied to whatever appliance is being used is reduced because the total voltage drop from the wall to the final output of the appliance is fixed. Thus, if the voltage drop across the extension cord is large, the voltage drop across the appliance is significantly decreased, so the power output by the appliance can be significantly decreased, reducing the ability of the appliance to work properly.