29.1 Phylum Chordata

Learning Objectives

  • Describe the distinguishing characteristics of chordates
  • Identify the derived characters of craniates that sets them apart from other chordates
  • Describe the developmental fate of the notochord in vertebrates

Vertebrates are members of the kingdom Animalia and the phylum Chordata (Figure 29.2). Recall that animals that possess bilateral symmetry can be divided into two groups—protostomes and deuterostomes—based on their patterns of embryonic development. The deuterostomes, whose name translates as “second mouth,” consist of two major phyla: Echinodermata and Chordata. Echinoderms are invertebrate marine animals that have pentaradial symmetry and a spiny body covering, a group that includes sea stars, sea urchins, and sea cucumbers. The most conspicuous and familiar members of Chordata are vertebrates, but this phylum also includes two groups of invertebrate chordates.

 

The deuterostome phylogenetic tree includes Echinodermata and chordata. Chordates possess an notochord and include chephalochordates (lancelets), urochordata (tunicates) craniata, which have a cranium. Craniata includes the Myxini (hagfish) and vertebrata, which possess a vertebral column. Vertebrata includes the Petromyzontida (lampreys) and Gnathostomes, which possess a jaw. Gnathostomes include Actinopterygii (ray finned fishes) and animals with four limbs. Animals with four limbs include Actinistia (coelacanths) , dipnoi (lungfishes) and tetrapods, or animals with four legs. Tetrapods include amphibian (frogs and salamanders) and Amniotic, which possess an amniotic egg. Amniota includes reptilian (turtles, snakes, crocodiles and birds) and mammalia, or animals that produce milk.
Figure 29.2 Deuterostome phylogeny. All chordates are deuterostomes possessing a notochord at some stage of their life cycle.

Characteristics of phylum Chordata

Animals in the phylum Chordata share five key features that appear at some stage of their development: (Figure 29.3)

  1. Notochord
  2. Dorsal hollow nerve cord
  3. Pharyngeal slits
  4. Post-anal tail
  5. Endostyle/thyroid gland 

In some groups, some of these traits are present only during embryonic development. In addition to containing vertebrate classes, the phylum Chordata contains two clades of “invertebrates”: Urochordata (tunicates, salps, and larvaceans) and Cephalochordata (lancelets).

Notochord

The chordates are named for the notochord, which is a flexible, rod-shaped mesodermal structure that is found in the embryonic stage of all chordates and in the adult stage of some chordate species. It is strengthened with glycoproteins similar to cartilage and covered with a collagenous sheath. The notocord is located between the digestive tube and the nerve cord, and provides rigid skeletal support as well as a flexible location for attachment of axial muscles. In some chordates, the notochord acts as the primary axial support of the body throughout the animal’s lifetime. However, in vertebrates (craniates), the notochord is present only during embryonic development, at which time it induces the development of the neural tube and serves as a support for the developing embryonic body. The notochord, however, is not found in the postembryonic stages of vertebrates; at this point, it has been replaced by the vertebral column (that is, the spine).

Visual Connection

The illustration shows a fish-shaped chordate. A long, thin dorsal hollow nerve cord runs the length of the chordate, along the top. Immediately beneath the nerve cord is a notochord that also runs the length of the organism. Beneath the notochord, pharyngeal slits cut diagonally into tissue toward the front of the organism. A post-anal tail occurs at the rear.
Figure 29.3 Chordate features. In chordates, four common features appear at some point during development: a notochord, a dorsal hollow nerve cord, pharyngeal slits, and a post-anal tail. The endostyle is embedded in the floor of the pharynx.

Dorsal hollow nerve cord

The dorsal hollow nerve cord is derived from ectoderm that rolls into a hollow tube during development. In chordates, it is located dorsally to the notochord. In contrast, the nervous system in protostome animal phyla is characterized by solid nerve cords that are located either ventrally and/or laterally to the gut. In vertebrates, the neural tube develops into the brain and spinal cord, which together comprise the central nervous system (CNS). The peripheral nervous system (PNS) refers to the peripheral nerves (including the cranial nerves) lying outside of the brain and spinal cord.

Pharyngeal slits

Pharyngeal slits are openings in the pharynx (the region just posterior to the mouth) that extend to the outside environment. In organisms that live in aquatic environments, pharyngeal slits allow for the exit of water that enters the mouth during feeding. Some invertebrate chordates use the pharyngeal slits to filter food out of the water that enters the mouth. In vertebrate fishes, the pharyngeal slits are modified into gill supports, and in jawed fishes, into jaw supports. In tetrapods (land vertebrates), the slits are highly modified into components of the ear, and tonsils and thymus glands. In other vertebrates, pharyngeal arches, derived from all three germ layers, give rise to the oral jaw from the first pharyngeal arch, with the second arch becoming the hyoid and jaw support.

Endostyle

Endostyle is a strip of ciliated mucus-producing tissue in the floor of the pharynx. Food particles trapped in the mucus are moved along the endostyle toward the gut. The endostyle also produces substances similar to thyroid hormones and is homologous with the thyroid gland in vertebrates.

Post-anal tail

The post-anal tail is a posterior elongation of the body, extending beyond the anus. The tail contains skeletal elements and muscles, which provide a source of locomotion in aquatic species, such as fishes. In some terrestrial vertebrates, the tail also helps with balance, courting, and signaling when danger is near. In humans and other great apes, the post-anal tail is reduced to a vestigial coccyx (“tail bone”) that aids in balance during sitting.

Link to Learning

Click for a video discussing the evolution of chordates and five characteristics that they share.

Chordates and the Evolution of Vertebrates

Two clades of chordates are invertebrates: Cephalochordata and Urochordata. Members of these groups also possess the five distinctive features of chordates at some point during their development.

Cephalochordata (lancelets)

Members of Cephalochordata possess a notochord, dorsal hollow tubular nerve cord, pharyngeal slits, endostyle/thyroid gland, and a post-anal tail in the adult stage (Figure 29.4).

The illustration shows a lancelet with a head protruding form the sand, and the rest of the body buried. On the head, tentacles surround the mouth. The mouth leads to a digestive tract. The anus is just before the post anal tail. The pharyngeal slits are next to the atrium, which empties into the atriopore. The body has segmented muscles running along it from top to bottom.
Figure 29.4 Cephalochordate anatomy. In the lancelet and other cephalochordates, the notochord extends into the head region. Adult lancelets retain all five key characteristics of chordates: a notochord, a dorsal hollow nerve cord, pharyngeal slits, an endostyle, and a post-anal tail.

Urochordata: Tunicates

The 1,600 species of Urochordata are also known as tunicates (Figure 29.5). The name tunicate derives from the cellulose-like carbohydrate material, called the tunic, which covers the outer body of tunicates. Although tunicates are classified as chordates, the adults do not have a notochord, a dorsal hollow nerve cord, or a post-anal tail, although they do have pharyngeal slits and an endostyle.

 

Photo A shows tunicates, which are sponge-like in appearance and have holes along the surface. Illustration B shows the tunicate larval stage, which resembles a tadpole, with a post anal tail at the narrow end. A dorsal hollow nerve cord run along the upper back, and a notochord runs beneath the nerve cord. The digestive tract starts with a mouth at the front of the animal connected to a stomach. Above the stomach is the anus. The pharyngeal slits, which are located in between the stomach and mouth, are connected to an atrial opening at the top of the body. Illustration C shows an adult tunicate, which resembles a tree stump anchored at the bottom. Water enters through a mouth at the top of the body and passes through the pharyngeal slits, where it is filtered. Water then exits through another opening at the side of the body. A heart, stomach and gonad are tucked beneath the pharyngeal slit. The outer surface is called a tunic.
Figure 29.5 Urochordate anatomy. (a) This photograph shows a colony of the tunicate Botrylloides violaceus. (b) The larval stage of the tunicate possesses all of the features characteristic of chordates: a notochord, a dorsal hollow nerve cord, pharyngeal slits, an endostyle, and a post-anal tail. (c) In the adult stage, the notochord, nerve cord, and tail disappear, leaving just the pharyngeal slits and endostyle. (credit: modification of work by Dann Blackwood, USGS)
The image displays a group of salps near a coral reef. This appears as a long, globular chain, with interior sections shaped like snails.
Figure 29.6 Salps. These colonial tunicates feed on phytoplankton. Salps are sequential hermaphrodites, with younger female colonies fertilized by older male colonies. (credit: Oregon Department of Fish & Wildlife via Wikimedia Commons)

Subphylum Vertebrata (Craniata)

cranium is a bony, cartilaginous, or fibrous structure surrounding the brain, jaw, and facial bones (Figure 29.7). Most bilaterally symmetrical animals have a head; of these, those that have a cranium comprise the clade Craniata/Vertebrata, which includes the primitively jawless Myxini (hagfishes), Petromyzontida (lampreys), and all of the organisms called “vertebrates.” (We should note that the Myxini have a cranium but lack a backbone.)

The cranium wraps around the upper part of the head. The mandible is the lower jaw. Other bones complete the skull.
Figure 29.7 A craniate skull. The subphylum Craniata (or Vertebrata), including this placoderm fish (Dunkleosteussp.), are characterized by the presence of a cranium, mandible, and other facial bones. (credit: “Steveoc 86”/Wikimedia Commons)

Members of the phylum Craniata/Vertebrata display the five characteristic features of the chordates; however, members of this group also share derived characteristics that distinguish them from invertebrate chordates. Vertebrates are named for the vertebral column, composed of vertebrae—a series of separate, irregularly shaped bones joined together to form a backbone (Figure 29.8). Initially, the vertebrae form in segments around the embryonic notochord, but eventually replace it in adults.

Photo shows a fish skeleton with a vertebral column extending back from the skull.
Figure 29.8 A vertebrate skeleton. Vertebrata are characterized by the presence of a backbone, such as the one that runs through the middle of this fish. All vertebrates are in the Craniata clade and have a cranium. (credit: Ernest V. More; taken at Smithsonian Museum of Natural History, Washington, D.C.)

Vertebrates are the largest group of chordates, with more than 62,000 living species, which are grouped based on anatomical and physiological traits. More than one classification and naming scheme is used for these animals. Here we will consider the traditional groups AgnathaChondrichthyesOsteichthyes, Amphibia, Reptilia, Aves, and Mammalia, which constitute classes in the subphylum Vertebrata/Craniata. Virtually all modern cladists classify birds within Reptilia, which correctly reflects their evolutionary heritage. Thus, we now have the nonavian reptiles and the avian reptiles in our reptilian classification. We consider them separately only for convenience. Further, we will consider hagfishes and lampreys together as jawless fishes, the Agnatha, although emerging classification schemes separate them into chordate jawless fishes (the hagfishes) and vertebrate jawless fishes (the lampreys).

Animals that possess jaws are known as gnathostomes, which means “jawed mouth.” Gnathostomes include fishes and tetrapodsTetrapod literally means “four-footed,” which refers to the phylogenetic history of various land vertebrates, even though in some of the tetrapods, the limbs may have been modified for purposes other than walking. Tetrapods include amphibians, reptiles, birds, and mammals, and technically could also refer to the extinct fishlike groups that gave rise to the tetrapods. Tetrapods can be further divided into two groups: amphibians and amniotesAmniotes are animals whose eggs contain four extraembryonic membranes (yolk sac, amnion, chorion, and allantois) that provide nutrition and a water-retaining environment for their embryos. Amniotes are adapted for terrestrial living, and include mammalsreptiles, and birds.

License

Icon for the Creative Commons Attribution-ShareAlike 4.0 International License

General Biology Copyright © by Mary Ann Clark; Matthew Douglas; and Jung Choi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book