19.3 Adaptive Evolution

Learning Outcomes

  • Explain the different ways natural selection can shape populations
  • Describe how these different forces can lead to different outcomes in terms of the population variation

Natural selection only acts on the population’s heritable traits: selecting for beneficial alleles and thus increasing their frequency in the population, while selecting against deleterious alleles and thereby decreasing their frequency. Scientists call this process adaptive evolution. Natural selection does not act on individual alleles, but on entire organisms. An individual may carry a very beneficial genotype with a resulting phenotype that, for example, increases the ability to reproduce (fecundity), but if that same individual also carries an allele that results in a fatal childhood disease, that fecundity phenotype will not pass to the next generation because the individual will not live to reach reproductive age. Natural selection acts at the individual’s level. It selects for individuals with greater contributions to the gene pool of the next generation. Scientists call this an organism’s evolutionary (Darwinian) fitness.

Fitness is often quantifiable and is measured by scientists in the field. However, it is not an individual’s absolute fitness that counts, but rather how it compares to the other organisms in the population. Scientists call this concept relative fitness, which allows researchers to determine which individuals are contributing additional offspring to the next generation, and thus, how the population might evolve.

There are several ways selection can affect population variation:

  • stabilizing selection
  • directional selection
  • diversifying selection (also called disruptive selection)
  • frequency-dependent selection
  • sexual selection

As natural selection influences the allele frequencies in a population, individuals can either become more or less genetically similar and the phenotypes can become more similar or more disparate.

Stabilizing Selection

If natural selection favors an average phenotype, selecting against extreme variation, the population will undergo stabilizing selection (Figure 19.8). In a mouse population that live in the woods, for example, natural selection is likely to favor mice that best blend in with the forest floor and are less likely for predators to spot. Assuming the ground is a fairly consistent shade of brown, those mice whose fur is most closely matched to that color will be most likely to survive and reproduce, passing on their genes for their brown coat. Mice that carry alleles that make them a bit lighter or a bit darker will stand out against the ground and be more likely to fall victim to predation. As a result of this selection, the population’s genetic variance will decrease.

Directional Selection

When the environment changes, populations will often undergo directional selection (Figure 19.8), which selects for phenotypes at one end of the spectrum of existing variation. A classic example of this type of selection is the evolution of the peppered moth in eighteenth- and nineteenth-century England. Prior to the Industrial Revolution, the moths were predominately light in color, which allowed them to blend in with the light-colored trees and lichens in their environment. However, as soot began spewing from factories, the trees darkened, and the light-colored moths became easier for predatory birds to spot. Over time, the frequency of the moth’s melanic form increased because they had a higher survival rate in habitats affected by air pollution because their darker coloration blended with the sooty trees. Similarly, the hypothetical mouse population may evolve to take on a different coloration if something were to cause the forest floor where they live to change color. The result of this type of selection is a shift in the population’s genetic variance toward the new, fit phenotype.

Diversifying Selection

Sometimes two or more distinct phenotypes can each have their advantages for natural selection, while the intermediate phenotypes are, on average, less fit. Scientists call this diversifying selection (Figure 19.8) We see this in many animal populations that have multiple male forms. Large, dominant alpha males use brute force to obtain mates, while small males can sneak in for furtive copulations with the females in an alpha male’s territory. In this case, both the alpha males and the “sneaking” males will be selected for, but medium-sized males, who can’t overtake the alpha males and are too big to sneak copulations, are selected against. Diversifying selection can also occur when environmental changes favor individuals on either end of the phenotypic spectrum. Imagine a mouse population living at the beach where there is light-colored sand interspersed with patches of tall grass. In this scenario, light-colored mice that blend in with the sand would be favored, as well as dark-colored mice that can hide in the grass. Medium-colored mice, alternatively would not blend in with either the grass or the sand, and thus predators would most likely eat them. The result of this type of selection is increased genetic variance as the population becomes more diverse.

Three line graphs illustrating various forms of natural selection
Figure 19.8 Different types of natural selection can impact the distribution of phenotypes within a population. In (a) stabilizing selection, an average phenotype is favored. In (b) directional selection, a change in the environment shifts the spectrum of observed phenotypes. In (c) diversifying selection, two or more extreme phenotypes are selected for, while the average phenotype is selected against.

Frequency-Dependent Selection

Another type of selection, frequency-dependent selection, favors phenotypes that are either common (positive frequency-dependent selection) or rare (negative frequency-dependent selection). We can observe an interesting example of this type of selection in a unique group of Pacific Northwest lizards. Male common side-blotched lizards come in three throat-color patterns: orange, blue, and yellow. Each of these forms has a different reproductive strategy: orange males are the strongest and can fight other males for access to their females. Blue males are medium-sized and form strong pair bonds with their mates. Yellow males (Figure 19.9) are the smallest, and look a bit like females, which allows them to sneak copulations. Like a game of rock-paper-scissors, orange beats blue, blue beats yellow, and yellow beats orange in the competition for females. That is, the big, strong orange males can fight off the blue males to mate with the blue’s pair-bonded females, the blue males are successful at guarding their mates against yellow sneaker males, and the yellow males can sneak copulations from the potential mates of the large, polygynous orange males.

Photo shows a mottled green and brown lizard sitting on a rock.
Figure 19.9 A yellow-throated side-blotched lizard is smaller than either the blue-throated or orange-throated males and appears a bit like the females of the species, allowing it to sneak copulations. (credit: “tinyfroglet”/Flickr)

In this scenario, natural selection favors orange males when blue males dominate the population. Blue males will thrive when the population is mostly yellow males, and yellow males will be selected for when orange males are the most populous. As a result, populations of side-blotched lizards cycle in the distribution of these phenotypes—in one generation, orange might predominate, and then yellow males will begin to rise in frequency. Once yellow males comprise a majority of the population, blue males will be selected. Finally, when blue males become common, orange males once again will be favored.

Negative frequency-dependent selection serves to increase the population’s genetic variance by selecting for rare phenotypes; whereas, positive frequency-dependent selection usually decreases genetic variance by selecting for common phenotypes.

Sexual Selection

Males and females of certain species are often quite different from one another in ways beyond the reproductive organs. Males are often larger, for example, and display many elaborate colors and adornments, like the peacock’s tail, while females tend to be smaller and duller in decoration. We call such differences sexual dimorphisms (Figure 19.10), which arise in many populations, particularly animal populations, where there is more variance in the male’s reproductive success than that of the females. That is, some males—often the bigger, stronger, or more decorated males—obtain the vast majority of the total matings, while others receive none. This can occur because the males are better at fighting off other males, or because females will choose to mate with the bigger or more decorated males. In either case, this variation in reproductive success generates a strong selection pressure among males to obtain those matings, resulting in the evolution of bigger body size and elaborate ornaments to attract the females’ attention. Females, however, tend to achieve a handful of selected matings; therefore, they are more likely to select more desirable males.

Sexual dimorphism varies widely among species, and some species are even sex-role reversed. In such cases, females tend to have a greater variance in their reproductive success than males and are correspondingly selected for the bigger body size and elaborate traits usually characteristic of males.

A picture of two peacocks, two spiders and two ducks
Figure 19.10 Sexual dimorphism in (a) peacocks and peahens, (b) Argiope appensa spiders (the female spider is the large one), and in (c) wood ducks. (credit “spiders”: modification of work by “Sanba38”/Wikimedia Commons; credit “duck”: modification of work by Kevin Cole)

We call the selection pressures on males and females to obtain matings sexual selection. It can result in developing secondary sexual characteristics that do not benefit the individual’s likelihood of survival but help to maximize its reproductive success. Sexual selection can be so strong that it selects traits that are actually detrimental to the individual’s survival. Think, once again, about the peacock’s tail. While it is beautiful and the male with the largest, most colorful tail is more likely to win the female, it is not the most practical appendage. In addition to greater visibility to predators, it makes the males slower in their attempted escapes. There is some evidence that this risk is why females like the big tails in the first place. The speculation is that large tails carry risk, and only the best males survive that risk: the bigger the tail, the more fit the male. We call this the handicap principle.

The good genes hypothesis states that males develop these impressive ornaments to show off their efficient metabolism or their ability to fight disease. Females then choose males with the most impressive traits because it signals their genetic superiority, which they will then pass on to their offspring. Although one may argue that females should not be picky because it will likely reduce their number of offspring, if better males father more fit offspring, it may be beneficial. Fewer, healthier offspring may increase the chances of survival more than many, weaker offspring.

In both the handicap principle and the good genes hypothesis, the trait is an honest signal of the males’ quality, thus giving females a way to find the fittest mates— males that will pass the best genes to their offspring.

Link to Learning

Natural selection

This video by Crash Course recaps the concepts of natural selection, adaptation, fitness.

Table of Contents
  1. Natural Selection 1:27
  2. Adaptation 2:56
  3. Fitness 3:36
  4. Four Principals 3:54
  5. Variations 4:01
  6. Heritability 4:17
  7. “The Struggle for Existence” 4:25
  8. Survival and Reproductive Rates 5:00
  9. Biolography 5:59
  10. Modes of Selection 7:40
  11. Directional Selection 8:17
  12. Stabilizing Selection 8:56
  13. Disruptive Selection 9:27
  14. Sexual Selection 10:22
  15. Artificial Selection 11:24

No Perfect Organism

Natural selection is a driving force in evolution and can generate populations that are better adapted to survive and successfully reproduce in their environments. However, natural selection cannot produce the perfect organism. Natural selection can only select on existing variation in the population. It does not create anything from scratch. Thus, it is limited by a population’s existing genetic variance and whatever new alleles arise through mutation and gene flow.

Natural selection is also limited because it works at the individual, not allele level, and some alleles are linked due to their physical proximity in the genome, making them more likely to pass on together (linkage disequilibrium). Any given individual may carry some beneficial and some unfavorable alleles. It is the alleles’ net effect, or the organism’s fitness, upon which natural selection can act. As a result, good alleles can be lost if individuals who carry them also have several overwhelmingly bad alleles. Likewise, bad alleles can be kept if individuals who have enough good alleles to result in an overall fitness benefit carry them.

Furthermore, natural selection can be constrained by the relationships between different polymorphisms. One morph may confer a higher fitness than another, but may not increase in frequency because going from the less beneficial to the more beneficial trait would require going through a less beneficial phenotype. Think back to the mice that live at the beach. Some are light-colored and blend in with the sand, while others are dark and blend in with the patches of grass. The dark-colored mice may be, overall, more fit than the light-colored mice, and at first glance, one might expect the light-colored mice to be selected for a darker coloration. However, remember that the intermediate phenotype, a medium-colored coat, is very bad for the mice—they cannot blend in with either the sand or the grass and predators are more likely to eat them. As a result, the light-colored mice would not be selected for a dark coloration because those individuals who began moving in that direction (began selection for a darker coat) would be less fit than those that stayed light.

Finally, it is important to understand that not all evolution is adaptive. While natural selection selects the fittest individuals and often results in a more fit population overall, other forces of evolution, including genetic drift and gene flow, often do the opposite: introducing deleterious alleles to the population’s gene pool. Evolution has no purpose—it is not changing a population into a preconceived ideal. It is simply the sum of the various forces that we have described in this chapter and how they influence the population’s genetic and phenotypic variance.

Link to Learning

Misconceptions about evolution

As you now have learned a lot about the various biological concepts related to natural selection and adaptation, this hopefully has cleared up any misconceptions that you might have had about the subject (if you had any at all). Have a look at this list of common misconceptions and their clarifications provided by the University of California, Berkely on the website Understanding Evolution to determine if you have any that remained.

definition

License

Icon for the Creative Commons Attribution-ShareAlike 4.0 International License

General Biology Copyright © by Mary Ann Clark; Matthew Douglas; and Jung Choi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book