28.7 Phylum Echinodermata
Learning Outcomes
- Describe the distinguishing characteristics of echinoderms
The phyla Echinodermata and Chordata (the phylum that includes humans) both belong to the superphylum Deuterostomia. Recall that protostomes and deuterostomes differ in certain aspects of their embryonic development, and they are named based on which opening of the archenteron (primitive gut tube) develops first. The word deuterostome comes from the Greek word meaning “mouth second,” indicating that the mouth develops as a secondary structure opposite the location of the blastopore, which becomes the anus. In protostomes (“mouth first”), the first embryonic opening becomes the mouth, and the second opening becomes the anus.
The deuterostomes consist of two major clades—the Chordata and the Ambulacraria. The Chordata include the vertebrates and two invertebrate subphyla, the urochordates and the cephalochordates. The Ambulacraria include the echinoderms and the hemichordates, which were once considered to be a chordate subphylum (Figure 28.46). The two clades, in addition to being deuterostomes, have some other interesting features in common. As we have seen, the vast majority of invertebrate animals do notpossess a defined bony vertebral endoskeleton, or a bony cranium. However, one of the most ancestral groups of deuterostome invertebrates, the Echinodermata, do produce tiny skeletal “bones” called ossicles that make up a true endoskeleton, or internal skeleton, covered by an epidermis.
Phylum Echinodermata
Echinodermata are named after their “prickly skin” (from the Greek “echinos” meaning “prickly” and “dermos” meaning “skin”). This phylum is a collection of about 7,000 described living species of exclusively marine, bottom-dwelling organisms. Sea stars (Figure 28.47), sea cucumbers, sea urchins, sand dollars, and brittle stars are all examples of echinoderms.
Morphology and Anatomy
Despite the adaptive value of bilaterality for most free-living cephalized animals, adult echinoderms exhibit pentaradial symmetry (with “arms” typically arrayed in multiples of five around a central axis). Echinoderms have an endoskeleton made of calcareous ossicles (small bony plates), covered by the epidermis. For this reason, it is an endoskeleton like our own, not an exoskeleton like that of arthropods. The ossicles may be fused together, embedded separately in the connective tissue of the dermis, or be reduced to minute spicules of bone as in sea cucumbers. The spines for which the echinoderms are named are connected to some of the plates. The spines may be moved by small muscles, but they can also be locked into place for defense. In some species, the spines are surrounded by tiny stalked claws called pedicellaria, which help keep the animal’s surface clean of debris, protect papulae used in respiration, and sometimes aid in food capture.
Each arm or section of the animal contains several different structures: for example, digestive glands, gonads, and the tube feet that are unique to the echinoderms. In echinoderms like sea stars, every arm bears two rows of tube feet on the oral side, running along an external ambulacral groove. These tube feet assist in locomotion, feeding, and chemical sensations, as well as serve to attach some species to the substratum.
Water Vascular and Hemal Systems
Echinoderms have a unique ambulacral (water vascular) system, derived from part of the coelom, or “body cavity.” The water vascular system consists of a central ring canal and radial canals that extend along each arm. Each radial canal is connected to a double row of tube feet, which project through holes in the endoskeleton, and function as tactile and ambulatory structures. These tube feet can extend or retract based on the volume of water present in the system of that arm, allowing the animal to move and also allowing it to capture prey with their suckerlike action. Individual tube feet are controlled by bulblike ampullae. Seawater enters the system through an aboral madreporite (opposite the oral area where the mouth is located) and passes to the ring canal through a short stone canal. Water circulating through these structures facilitates gaseous exchange and provides a hydrostatic source for locomotion and prey manipulation. A hemal system, consisting of oral, gastric, and aboral rings, as well as other vessels running roughly parallel to the water vascular system, circulates nutrients. Transport of nutrients and gases is shared by the water vascular and hemal systems in addition to the visceral body cavity that surrounds the major organs.
The nervous system in these animals is a relatively simple, comprising a circumoral nerve ring at the center and five radial nerves extending outward along the arms. In addition, several networks of nerves are located in different parts of the body. However, structures analogous to a brain or large ganglia are not present in these animals. Depending on the group, echinoderms may have well-developed sensory organs for touch and chemoreception (e.g., within the tube feet and on tentacles at the tips of the arms), as well as photoreceptors and statocysts.
A mouth, located on the oral (ventral) side, opens through a short esophagus to a large, baglike stomach. The so-called “cardiac” stomach can be everted through the mouth during feeding (for example, when a starfish everts its stomach into a bivalve prey item to digest the animal—alive—within its own shell!)
Podocytes—cells specialized for ultrafiltration of bodily fluids—are present near the center of the echinoderm disc, at the junction of the water vascular and hemal systems. These podocytes are connected by an internal system of canals to the madreporite, where water enters the stone canal.
Echinoderms are dioecious, but males and females are indistinguishable apart from their gametes. Males and females release their gametes into water at the same time and fertilization is external. The early larval stages of all echinoderms (e.g., the bipinnaria of asteroid echinoderms such as sea stars) have bilateral symmetry. Sea stars, brittle stars, and sea cucumbers may also reproduce asexually by fragmentation, as well as regenerate body parts lost in trauma, even when over 75 percent of their body mass is lost!
Classes of Echinoderms
This phylum is divided into five extant classes: Asteroidea (sea stars), Ophiuroidea (brittle stars), Echinoidea (sea urchins and sand dollars), Crinoidea (sea lilies or feather stars), and Holothuroidea (sea cucumbers) (Figure 28.48).
Class Asteroidea
The most well-known echinoderms are members of class Asteroidea, or sea stars. They come in a large variety of shapes, colors, and sizes, with more than 1,800 species known so far. The key characteristic of sea stars that distinguishes them from other echinoderm classes includes thick arms that extend from a central disk from which various body organs branch into the arms.
Link to Learning
Explore the sea star’s body plan up close, watch one move across the sea floor, and see it devour a mussel.
Class Ophiuroidea
Brittle stars belong to the class Ophiuroidea (“snake-tails”). Unlike sea stars, which have plump arms, brittle stars have long, thin, flexible arms that are sharply demarcated from the central disk.
Class Echinoidea
Sea urchins and sand dollars are examples of Echinoidea (“prickly“). These echinoderms do not have arms, but are hemispherical or flattened with five rows of tube feet that extend through five rows of pores in a continuous internal shell called a test.
Class Crinoidea
Sea lilies and feather stars are examples of Crinoidea. Sea lilies are sessile, with the body attached to a stalk, but the feather stars can actively move about using leglike cirri that emerge from the aboral surface.
Class Holothuroidea
Sea cucumbers of class Holothuroidea exhibit an extended oral-aboral axis. These are the only echinoderms that demonstrate “functional” bilateral symmetry as adults, because the extended oral-aboral axis compels the animal to lie horizontally rather than stand vertically.