3 Motion Along a Straight Line
3.1 Position, Displacement, and Average Velocity
Learning Objectives
By the end of this section, you will be able to:
- Define position, displacement, and distance traveled.
- Calculate the total displacement given the position as a function of time.
- Determine the total distance traveled.
- Calculate the average velocity given the displacement and elapsed time.
When you’re in motion, the basic questions to ask are: Where are you? Where are you going? How fast are you getting there? The answers to these questions require that you specify your position, your displacement, and your average velocity—the terms we define in this section.
Position
To describe the motion of an object, you must first be able to describe its position (x): where it is at any particular time. More precisely, we need to specify its position relative to a convenient frame of reference. A frame of reference is an arbitrary set of axes from which the position and motion of an object are described. Earth is often used as a frame of reference, and we often describe the position of an object as it relates to stationary objects on Earth. For example, a rocket launch could be described in terms of the position of the rocket with respect to Earth as a whole, whereas a cyclist’s position could be described in terms of where she is in relation to the buildings she passes Figure. In other cases, we use reference frames that are not stationary but are in motion relative to Earth. To describe the position of a person in an airplane, for example, we use the airplane, not Earth, as the reference frame. To describe the position of an object undergoing one-dimensional motion, we often use the variable x. Later in the chapter, during the discussion of free fall, we use the variable y.

Displacement
If an object moves relative to a frame of reference—for example, if a professor moves to the right relative to a whiteboard Figure—then the object’s position changes. This change in position is called displacement. The word displacement implies that an object has moved, or has been displaced. Although position is the numerical value of x along a straight line where an object might be located, displacement gives the change in position along this line. Since displacement indicates direction, it is a vector and can be either positive or negative, depending on the choice of positive direction. Also, an analysis of motion can have many displacements embedded in it. If right is positive and an object moves 2 m to the right, then 4 m to the left, the individual displacements are 2 m and

Displacement
Displacement
where
We use the uppercase Greek letter delta (Δ) to mean “change in” whatever quantity follows it; thus,
Objects in motion can also have a series of displacements. In the previous example of the pacing professor, the individual displacements are 2 m and
where
Similarly,
Thus,
The total displacement is 2 − 4 = −2 m to the left, or in the negative direction. It is also useful to calculate the magnitude of the displacement, or its size. The magnitude of the displacement is always positive. This is the absolute value of the displacement, because displacement is a vector and cannot have a negative value of magnitude. In our example, the magnitude of the total displacement is 2 m, whereas the magnitudes of the individual displacements are 2 m and 4 m.
The magnitude of the total displacement should not be confused with the distance traveled. Distance traveled
Average Velocity
To calculate the other physical quantities in kinematics we must introduce the time variable. The time variable allows us not only to state where the object is (its position) during its motion, but also how fast it is moving. How fast an object is moving is given by the rate at which the position changes with time.
For each position
Average Velocity
If
It is important to note that the average velocity is a vector and can be negative, depending on positions
Example
Delivering Flyers
Jill sets out from her home to deliver flyers for her yard sale, traveling due east along her street lined with houses. At
- What is Jill’s total displacement to the point where she stops to rest?
- What is the magnitude of the final displacement?
- What is the average velocity during her entire trip?
- What is the total distance traveled?
- Make a graph of position versus time.
A sketch of Jill’s movements is shown in Figure.

Strategy
The problem contains data on the various legs of Jill’s trip, so it would be useful to make a table of the physical quantities. We are given position and time in the wording of the problem so we can calculate the displacements and the elapsed time. We take east to be the positive direction. From this information we can find the total displacement and average velocity. Jill’s home is the starting point
Time ti (min) | Position |
Displacement |
---|---|---|
Solution
-
Show Answer
From the above table, the total displacement is
-
Show Answer
The magnitude of the total displacement is
. -
Show Answer
-
Show Answer
The total distance traveled (sum of magnitudes of individual displacements) is
. -
Show Answer
We can graph Jill’s position versus time as a useful aid to see the motion; the graph is shown in (Figure).
Figure 3.5 This graph depicts Jill’s position versus time. The average velocity is the slope of a line connecting the initial and final points.
Significance
Jill’s total displacement is −0.75 km, which means at the end of her trip she ends up
Check Your Understanding
A cyclist rides 3 km west and then turns around and rides 2 km east. (a) What is his displacement? (b) What is the distance traveled? (c) What is the magnitude of his displacement?
Show Answer
(a) The rider’s displacement is
Summary
- Kinematics is the description of motion without considering its causes. In this chapter, it is limited to motion along a straight line, called one-dimensional motion.
- Displacement is the change in position of an object. The SI unit for displacement is the meter. Displacement has direction as well as magnitude.
- Distance traveled is the total length of the path traveled between two positions.
- Time is measured in terms of change. The time between two position points
and is . Elapsed time for an event is , where is the final time and is the initial time. The initial time is often taken to be zero. - Average velocity
is defined as displacement divided by elapsed time. If and are two position time points, the average velocity between these points is
Conceptual Questions
Give an example in which there are clear distinctions among distance traveled, displacement, and magnitude of displacement. Identify each quantity in your example specifically.
Show Solution
You drive your car into town and return to drive past your house to a friend’s house.
Under what circumstances does distance traveled equal magnitude of displacement? What is the only case in which magnitude of displacement and displacement are exactly the same?
Bacteria move back and forth using their flagella (structures that look like little tails). Speeds of up to 50 μm/s (50 × 10−6 m/s) have been observed. The total distance traveled by a bacterium is large for its size, whereas its displacement is small. Why is this?
Show Solution
If the bacteria are moving back and forth, then the displacements are canceling each other and the final displacement is small.
Give an example of a device used to measure time and identify what change in that device indicates a change in time.
Does a car’s odometer measure distance traveled or displacement?
Show Solution
Distance traveled
During a given time interval the average velocity of an object is zero. What can you say conclude about its displacement over the time interval?
Problems
Consider a coordinate system in which the positive x axis is directed upward vertically. What are the positions of a particle (a) 5.0 m directly above the origin and (b) 2.0 m below the origin?
A car is 2.0 km west of a traffic light at t = 0 and 5.0 km east of the light at t = 6.0 min. Assume the origin of the coordinate system is the light and the positive x direction is eastward. (a) What are the car’s position vectors at these two times? (b) What is the car’s displacement between 0 min and 6.0 min?
Show Solution
a.
The Shanghai maglev train connects Longyang Road to Pudong International Airport, a distance of 30 km. The journey takes 8 minutes on average. What is the maglev train’s average velocity?
The position of a particle moving along the x-axis is given by
Show Solution
a.
A cyclist rides 8.0 km east for 20 minutes, then he turns and heads west for 8 minutes and 3.2 km. Finally, he rides east for 16 km, which takes 40 minutes. (a) What is the final displacement of the cyclist? (b) What is his average velocity?
On February 15, 2013, a superbolide meteor (brighter than the Sun) entered Earth’s atmosphere over Chelyabinsk, Russia, and exploded at an altitude of 23.5 km. Eyewitnesses could feel the intense heat from the fireball, and the blast wave from the explosion blew out windows in buildings. The blast wave took approximately 2 minutes 30 seconds to reach ground level. (a) What was the average velocity of the blast wave? b) Compare this with the speed of sound, which is 343 m/s at sea level.
Show Solution
a. 150.0 s,
Glossary
- average velocity
- the displacement divided by the time over which displacement occurs
- displacement
- the change in position of an object
- distance traveled
- the total length of the path traveled between two positions
- elapsed time
- the difference between the ending time and the beginning time
- kinematics
- the description of motion through properties such as position, time, velocity, and acceleration
- position
- the location of an object at a particular time
- total displacement
- the sum of individual displacements over a given time period